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Abstract
We investigate a class of natural Hamiltonian systems with two degrees

of freedom. The kinetic energy depends on coordinates but the system is ho-
mogeneous. Thanks to this property it admits, in general case, a particular
solution. Using this solution we derive necessary conditions for the integra-
bility of these system investigating differential Galois group of variational
equations.

1 Introduction. Morales–Ramis Theory
? Let H : C2n→ C be a holomorphic Hamiltonian, and

d

dt
x = vH(x), x ∈ C2n, t ∈ C, (1)

the associated Hamilton equations.
? Let t → ϕ(t) ∈ C2n be a solution of (1). The maximal analytic
continuation of ϕ(t) defines a Riemann surface Γ with t as a local
coordinate.
? The variational equations (VE) along ϕ(t) have the form

d

dt
ξ = A(t)ξ, where A(t) =

∂vH
∂x

(ϕ(t)). (2)

?The variational equations divides into two subsystems: the tangen-
tial variational equations of dimension 2 and the normal variational
equations (NVE) of dimension 2n− 2.
? The monodromy groupM of NVE is the image of the fundamental
group of Γ obtained in the process of continuation of local solutions
of NVE along closed paths on Γ. It is a subgroup of SL(2n− 2,C).
? The differential Galois group G of NVE is a matrix group which
acts on solutions of NVE and does not change polynomial relations
among them. It is an algebraic subgroup of SL(2n − 2,C). Thus, is
a union of disjoint connected components. One of them, containing
the identity, is called the identity component of G and is denoted by
G0. In nineties of XX century Morales-Ruiz and Ramis showed that
the integrability in the Liouville sense imposes a very restrictive con-
dition on G0.
Theorem 1 (Morales-Ruiz and Ramis [1]). Assume that a Hamiltonian
system (1) is meromorphically integrable in the Liouville sense in a neigh-
bourhood of a phase curve Γ. Then, the identity component G0 of the differ-
ential Galois group G of VEs associated with Γ is Abelian.
Aplications of Morales–Ramis theory
? to prove non-integrability of Hamiltonian systems,
? to detection possible integrable cases for Hamiltonian systems de-
pending on parameters.
Main steps during applications
? find a particular solution different from equilibrium points,
? calculate VE and NVE,
? check if G0 is Abelian. This step is the most difficult. Usually we
try to transform NVE, by means of transformations which do not
change G0 , to equation with known differential Galois group: e.g.
the Riemann equation, the Lamé equation, an equation of the sec-
ond order with rational coefficients. For the differential equations
of the second order with rational coefficients there is an algorithm
(now called the Kovacic algorithm [2]) which allows to decide if an
equation of this type has solutions in closed form, to calculate its ex-
plicit forms and to relate a form of the solutions with the differential
Galois group.

Theorem 1 has found a very effective application for natural system
given by the following Hamiltonian

H =
1

2

n∑
i=1

p2
i + V (q), (3)

where V (q) is a homogeneous function of degree k ∈ Z, and q =

(q1, . . . , qn) and p = (p1, . . . , pn) are the generalised coordinates and
momenta, respectively. For such systems the particular solutions are
know and analysis of differential Galois group of variational equa-
tions can be done effectively. The obtained necessary conditions for
the integrability have the form of arithmetic restrictions of eigenval-
ues of Hessian V ′′(d) where d is a nonzero solution of V ′(d) = d. For
details consult e.g. [1].

2 Presentation of the system
Hamiltonian (3) describes a particle moving under influence of po-
tential forces in flat Euclidean space Rn. It is a natural to ask what
is an analog of homogeneous systems in curved spaces. There is no
obvious answer to this question. We have to take into account the
form of metric of the configuration space as well as the form of the
potential. Here we consider systems with two degrees of freedom
given be the following Hamiltonian

H = T + V, T =
1

2
rn

(
p2
r +

p2
ϕ

r2

)
, V = rmU(ϕ). (4)

If we consider (r, ϕ) as the polar coordinates, then the kinetic energy
corresponds to a singular metric on a plane or sphere.

3 Main result
In order to formulate our main result that are necessary conditions
for the integrability of Hamiltonian systems given by (4) we need to

define the following sets

I0(k,m) :=

{
1

k
(mp + 1) (2mp + k) | p ∈ Z

}
, (5)

I1(k,m) :=

{
1

2k
(mp− 2) (mp− k) | p = 2r + 1, r ∈ Z

}
, (6)

I2(k,m) :=

{
1

8k

[
4m2

(
p +

1

2

)2

− (k − 2)2

]
| p ∈ Z

}
, (7)

I3(k,m) :=

{
1

8k

[
4m2

(
p +

1

3

)2

− (k − 2)2

]
| p ∈ Z

}
, (8)

I4(k,m) :=

{
1

8k

[
4m2

(
p +

1

4

)2

− (k − 2)2

]
| p ∈ Z

}
, (9)

I5(k,m) :=

{
1

8k

[
4m2

(
p +

1

5

)2

− (k − 2)2

]
| p ∈ Z

}
, (10)

I6(k,m) :=

{
1

8k

[
4m2

(
p +

2

5

)2

− (k − 2)2

]
| p ∈ Z

}
, (11)

and Ia(k,m) := I0(k,m) ∪ I1(k,m) ∪ I2(k,m).

Theorem 2. Assume that U(ϕ) is a complex meromorphic function and
that there exists ϕ0 ∈ C such that U ′(ϕ0) = 0 and U(ϕ0) 6= 0. If the
Hamiltonian system defined by Hamiltonian (4) is integrable in the Liou-
ville sense, then number

λ := 1 +
U ′′(ϕ0)

kU(ϕ0)
, k = m− n, (12)

belongs to set I(k,m) which is defined by the following table

No. k m I(k,m)

1 −2(pm + 1) m R
2 k m Ia(k,m)

3 k = 2(mp− 1)± 1
3m 3q

⋃6
i=0 Ii(k,m)

4 k = 2(mp− 1)± 1
2m 2q Ia(k,m) ∪ I4(k,m)

5 k = 2(mp− 1)± 3
5m 5q Ia(k,m) ∪ I3(k,m) ∪ I6(k,m)

6 k = 2(mp− 1)± 1
5m 5q Ia(k,m) ∪ I3(k,m) ∪ I5(k,m)

Table 1: Integrability table. Here k,m, p, q ∈ Z

4 Proof of Theorem 2
If U ′(ϕ0) = 0 for a certain ϕ0 ∈ C, then the equations of motion
corresponding to Hamiltonian (4) have two dimensional invariant
manifold

N =
{

(r, ϕ, pr, pϕ) ∈ C4|ϕ = ϕ0, pϕ = 0
}
,

and its restriction to N is the following

ṙ = rnpr, ṗr = −1

2
nrn−1p2

r −mrm−1U(ϕ0). (13)

Let [R,Φ, PR, PΦ]T denote the variations of [r, ϕ, pr, pϕ]T . Then the
NVE after the change of independent variable t −→ z = rm(t), for
the chosen energy level E = U(ϕ0) transforms into

z(z − 1)Φ′′(z) +

[
2m + k + 2

2m
z − k + m + 2

2m

]
Φ′(z) +

k(1− λ)

2m2
Φ(z) = 0,

(14)
where k ≡ m − n, and λ ≡ 1 + U ′′(ϕ0)/(kU(ϕ0)). We recognize that
the equation (14) is the so-called Gauss hypergeometric differen-
tial equation, see e.g. [1]. In our case the differences of exponents at
z = 0, z = 1 and at z =∞ are given by

ρ =
m− k − 2

2m
, σ =

1

2
, τ =

√
(k − 2)2 + 8kλ

2m
.

If Hamilton equations of motion are integrable in the Liouville sense,
then by Theorem 1 the identity component of the differential Galois
group of variational equations as well as normal variational equa-
tions (14) is Abelian, so in particular it is solvable. Necessary and
sufficient conditions for solvability of the identity component of the
differential Galois group for the Riemann P equation as well as it
special form: the hypergeometric equation are well known thanks
to the Kimura theorem [3]. The proof consists of a direct applica-
tion of this theorem to our equation (14).
? Detailed proof can be found in [4] .

5 Application of Theorem 2
Let us consider Hamiltonian (4) with the specified function U(ϕ) =

− cosϕ. Then U ′ = sinϕ and we take ϕ0 = 0. Since U ′′(0)/U(0) = −1,
thus λ = (k− 1)/k. Comparing this value with forms of λ in families
Ij(k,m) for j = 0, . . . , 6 we obtain the following admissible values of
m,n ∈ Z for that system satisfies necessary integrability conditions

1. m = 1, n = 6, 5. m = 2, n = 1,

2. m = −1, n = −2, 6. m = −2, n = −3,

3. m = 1, n = 0, 7. m = 2, n = 7,

4. m = −1, n = 4, 8. m = −2, n = 3.

(15)

Surprisingly cases 1–4 in (15) are maximally superintegrable.
?Case 1. In this case we have the Hamiltonian of the following form

H =
1

2
r6

(
p2
r +

p2
ϕ

r2

)
− r cosϕ. (16)

This system has two additional, functionally independent first inte-
grals of the second order in momenta

F1 := r2p2
ϕ cos(2ϕ)− r3prpϕ sin(2ϕ) + r−1 sinϕ sin(2ϕ),

F2 := r2p2
ϕ sin(2ϕ) + r3prpϕ cos(2ϕ)− r−1 sinϕ cos(2ϕ).

(17)

Since we have 2n − 1 = 3 integrals of motion H,F1, F2 such that
{F1, H} = {F2, H} = 0 and {F1, F2} 6= 0 the system is maximally
super integrable.
? Case 2. We have the following Hamiltonian

H =
1

2
r−2

(
p2
r +

p2
ϕ

r2

)
− r−1 cosϕ, (18)

and two additional functionally independent first integrals are

F1 := r−2p2
ϕ cos(2ϕ) + r−1prpϕ sin(2ϕ) + r sinϕ sin(2ϕ),

F2 := −r−2p2
ϕ sin(2ϕ) + r−1prpϕ cos(2ϕ) + r sinϕ cos(2ϕ).

(19)

? Case 3. Hamilton and additional first integrals are the following

H =
1

2

(
p2
r +

p2
ϕ

r2

)
− r cosϕ,

F1 := r−1p2
ϕ cosϕ + prpϕ sinϕ +

1

2
r2 sin2ϕ,

F2 :=
(
p2
r − r−2p2

ϕ

)
cosϕ sinϕ + r−1prpϕ cos(2ϕ)− r sinϕ.

(20)

? Case 4. In this case we have respectively

H =
1

2
r4

(
p2
r +

p2
ϕ

r2

)
− r−1 cosϕ,

F1 := rp2
ϕ cosϕ− r2prpϕ sinϕ +

1

2
r−2 sin2ϕ,

F2 := r4
(
p2
r − r−2p2

ϕ

)
cosϕ sinϕ− r3prpϕ cos(2ϕ)− r−1 sinϕ.

(21)

It appear that also cases 5 and 8 in (15) are integrable.
? Case 5.

H =
1

2
r

(
p2
r +

p2
ϕ

r2

)
− r2 cosϕ,

F := r−1(p2
ϕ − r2p2

r) cosϕ + r2(1 + cos2ϕ) + 2prpϕ sinϕ.

(22)

? Case 8.

H =
1

2
r3

(
p2
r +

p2
ϕ

r2

)
− r−2 cosϕ,

F := r(p2
ϕ − r2p2

r) cosϕ + r−2(1 + cos2ϕ)− 2r2prpϕ sinϕ.

(23)

On contrary, it seems that cases 6 and 7 are not integrable, see Fig. 1.

(a) E = −0.5 with m = −2, n = −3 (b) E = −0.3 with m = 2, n = 7

Figure 1: Magnification of region around unstable periodic solution in the
Poincaré cross-section plane on the surface r = 1

It is important to note that λ also belongs to the first item in
the Table 1. However, cases obtained from it are generically non-
integrable, see Poincaré section on Fig. 2 showing large chaotic re-
gions.

Figure 2: The Poincaré cross sections plane on the surface r = 1
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